Oxygen Evolution Reaction: Ni3+-Induced Formation of Active NiOOH on the Spinel Ni-Co Oxide Surface for Efficient Oxygen Evolution Reaction (Adv. Energy Mater. 10/2015)
نویسندگان
چکیده
منابع مشابه
Nickel Oxide/Carbon Nanotubes as Active Hybrid Material for Oxygen Evolution Reaction
Carbon nanotubes are of great interest due to their high surface area and rich edge sites, which are favorable for wide applications. Here, a simple and efficient routine is presented by decoration of multi-wall carbon nanotube (MWCNT) with nickel oxide (NiO) nanoparticles.The morphologies of NiO-MWCNT were investigated by using scanning electron microscope (SEM) and energydispersive X-...
متن کاملChemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts
Owing to the transient nature of the intermediates formed during the oxygen evolution reaction (OER) on the surface of transition metal oxides, their nature remains largely elusive by the means of simple techniques. The use of chemical probes is proposed, which, owing to their specific affinities towards different oxygen species, unravel the role played by these species on the OER mechanism. Fo...
متن کاملElectrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...
متن کاملElectrocatalysis: Co‐doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction (Adv. Sci. 2/2016)
متن کامل
Oxygen evolution reaction electrocatalyzed on a Fenton-treated gold surface.
Hydroxyl radicals arising from the Fenton reagent remove metastable surface gold atoms (low coordinated high-energy surface atoms) on the Au surface, thus precluding the formation of stable oxides. The resultant smooth surface, upon hydroxyl-radical activation, electrocatalyzes oxygen evolution reaction in 0.1 M NaOH at overpotentials lowered by 190 mV @ 10 mA cm(-2).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Energy Materials
سال: 2015
ISSN: 1614-6832
DOI: 10.1002/aenm.201570058